Afnan Mostafa

Ph.D. Student, Department of Mechanical Engineering

Research Interest

Computational Materials Science, Molecular and Multi-scale Modeling, Machine Learning, Deep Learning, Density Functional Theory, Metamaterials.

<u>1</u> Education

P

<i>Ph.D.</i> in Mechanical Engineering Specialization: Molecular and Multi-scale Modeling, Nanomaterials <i>University of Rochester, United States.</i> GPA: 4/4	Expected) September, 2028	
MS in Mechanical Engineering Specialization: 2D Materials, Molecular Simulations University of Massachusetts, Amherst, United States. GPA: 3.9/4 (overall)	09/01/2023	
B.Sc. in Mechanical Engineering Specialization: Molecular Modeling, Nanotechnology Bangladesh University of Engineering and Technology, Bangladesh. GPA: 3.71/4 (ove	07/2014 - 10/2018 rall)	
Professional Experience		
Journal Article Reviewer Nature Communications, Nature Publishing Group, ORCiD	08/2024 - Present	
Research & Teaching Assistant Department of <i>Mechanical Engineering</i> , University of Rochester , Rochester, NY	09/2023 - Present	
Research & Teaching Assistant Department of <i>Mechanical and Industrial Engineering</i> , University of Massachusetts , Amherst, MA	01/2021 - 08/2023	
HVAC Design Coordinator and Project Supervisor MEP Design Studio, Dhaka, Bangladesh	07/2019 - 01/2021	
Paid Co-op Internship, Engineering Division Eskayef Pharmaceuticals Ltd., Dhaka, Bangladesh	03/2018 - 04/2018	

P Awards & Achievements

MIE Departmental Fellowship, University of Massachusetts Amherst	2021
University Dean's award for academic excellence in B.Sc.	2016-2018
University Merit and Technical scholarships for academic excellence in B.Sc.	2014-2016
National Education Board Scholarship for securing top 100 amongst 230,000 candidates	2011

E Publications

Journal Articles (peer-reviewed)

- **J1. Mostafa, A.**, Vu, L., Guo, Z., Shargh, A. K., Dey, A., Askari, H., Abdolrahim, N., "Phase-transformation assisted twinning in molybdenum nanowires," *Computational Materials Science*, vol. 244, p. 113 273, 2024.
- J2. Mostafa, A., Ramasubramaniam, A., Maroudas, D., "Thermal conductivity of 2D diamond superstructures in interlayer-bonded twisted bilayer graphene," *Applied Physics Letters*, vol. 122, no. 13, 2023.
- **J3. Mostafa, A.**, Weerasinghe, A., Ramasubramaniam, A., Maroudas, D., "Response of interlayer-bonded bilayer graphene to shear deformation," *Journal of Applied Physics*, vol. 134, no. 15, 2023.

Journal Articles (under preparation)

- J4. Li, F., Mostafa, A., Zimmerman, J., Liang, Z., Klinger, L., Yeom, J., Janczak-Rusch, J., Abdolrahim, N., Rabkin, E., "Solid-state dewetting of co-sputtered thin Mo-Cu films accompanied by phase separation," 2024.
- J5. Qian, S., Mostafa, A., Li, F., Rabkin, E., Abdolrahim, N., "Orientation-dependent phase transformation in Molybdenum nanowires under uniaxial and bi-axial bending deformation," 2024.

Conference Proceedings

C1. Mostafa, A., Motalab, M., Faiyaz, A. R., Paul, R., "Uniaxial and cyclic stress-strain behavior of lead-free solders at nanoscale," in *AIP Conference Proceedings*, AIP Publishing, vol. 2324, 2021.

***** Presentations

A. Mostafa, L. Vu, F. Li, A. Dey, H. Askari, E. Rabkin, and N. Abdolrahim, "Novel Methods for Phase-Transformation-Assisted Twinning in Molybdenum Nanomaterials: Simulation and Experimental Study", *ASME International Mechanical Engineering Congress and Exposition (IMECE)* **2024**, *Portland, OR (Scheduled)*.

S. Qian, A. Mostafa, F. Li, E. Rabkin, and N. Abdolrahim, "Influence of Non-Uniaxial Bending on Twinning and Phase Transformation in Molybdenum Nanowires", *ASME International Mechanical Engineering Congress and Exposition (IMECE)* 2024, *Portland, OR (Scheduled)*.

A. Mostafa, L. Vu, F. Li, A. Dey, H. Askari, E. Rabkin, and N. Abdolrahim, "Atomistic insights on orientation-dependent deformation mechanisms in Molybdenum: Single-crystal nanowires and polycrystals", *TMS Annual Meeting & Exhibition* 2025, *Las Vegas, NV (Scheduled)*.

F. Li, A. Mostafa, N. Abdolrahim, J. Zimmerman, Z. Liang, L. Klinger, J. Yeom, J. Janczak-Rusch, and E. Rabkin, "Solid state dewetting of co-sputtered thin Mo-Cu films accompanied by phase separation", *TMS Annual Meeting & Exhibition 2025, Las Vegas, NV (Scheduled).*

S. Qian, A. Mostafa, F. Li, E. Rabkin, and N. Abdolrahim, "Influence of Non-Uniaxial Bending on Twinning and Phase Transformation in Molybdenum Nanowires", *TMS Annual Meeting & Exhibition* 2025, *Las Vegas, NV (Scheduled)*.

A. Mostafa, A. Ramasubramaniam, and D. Maroudas, "Thermal conductivity of interlayer-bonded bilayer graphene", *AIChE Annual Meeting* 2023, *Orlando, FL*.

A. Mostafa, A. Ramasubramaniam, and D. Maroudas, "Atomistic study of thermal and mechanical properties of graphenenanodiamond composites", *MSE Poster Symposium* 2023, *University of Massachusetts, Amherst.*

M. Chen, A. Mostafa, A. Weerasinghe, A. R. Muniz, A. Ramasubramaniam, and D. Maroudas, "2D diamond superstructures in interlayer-bonded twisted bilayer graphene: Mechanical response and thermal transport from moleculardynamics simulations", *AIChE Annual Meeting* **2022**, *Phoenix, AZ*. M. Chen, A. Weerasinghe, A. R. Muniz, A. Mostafa, A. Ramasubramaniam, and D. Maroudas, "Thermomechanical properties of nanodiamond superstructures in interlayer-bonded twisted bilayer graphene", *AIChE Annual Meeting* 2021, *Boston, MA*.

A. Mostafa, M. Motalab, A. R. Faiyaz, and R. Paul, "Uniaxial and cyclic stress-strain behavior of lead-free solders at the nanoscale", *AIP Conference Proceedings*, 2019, *Dhaka, Bangladesh*.

Graduate Thesis

Afnan Mostafa 2023, "Thermal conductivity and mechanical properties of interlayer-bonded graphene bilayers", University of Massachusetts, Amherst, MA, US.

- Addressed two major bottlenecks in graphene-based bilayers (i.e., brittle failure and reduction in thermal conduction)
- Investigated and compared various types of graphene bilayers for thermal management and shear applications
- MS Thesis DOI: 10.7275/35901268.0

Selected Academic Projects

FEM formulation in MATLAB and ABAQUS for Hertzian contact	
Course Instructor: Hesam Askari, Asst. Professor, ME	Fall 2023, ME441
o Formulated finite element methods from scratch in MATLAB	
o Generated stress and displacement profiles for a Hertzian contact problem	
o Compared such results with ABAQUS-simulated results and theoretical predictions	
o Report DOI: 10.13140/RG.2.2.32394.48328	
Machine learning and neural network models across different programming platforms <i>Course Instructor: Brendan Mort, Director, CIRC</i>	Fall 2023, DSCC401
o Developed machine learning and neural network models for various test cases	
o Compared accuracy among models written in Python and R	
o Analyzed big data using SPARK	
o GitHub Repository	

Undergraduate Thesis

Afnan Mostafa, et al. 2018, "Uniaxial and cyclic stress-strain behavior of lead-free solders at nanoscale", Department of ME, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.

- Investigated cyclic life of environment-friendly lead-free solder materials through atomistic simulations
- Developed atomistic models to predict the lifetime of such solder alloys
- DOI: 10.1063/5.0037536

Skills (*ordered by decreasing fluency)

Programming*:	Python, Matlab, C/C++, Bash, SPARK, R, Go, Fortran, MySQL, SPSS, SAS
Simulation Tools*:	LAMMPS, Atomsk, VMD, ANSYS, ABAQUS
Visualization:	Ovito, Vesta, VMD
3D CAD* :	SolidWorks, AutoCAD, OnShape, Adobe Illustrator
Document Preparation :	LATEX, MathCAD, Vi, Nano, Microsoft Office Suite
Info-graphic:	Gnuplot, Origin, Plot Digitizer
Job-Scheduling Utility:	Slurm, PBS
Build-Automation :	Make
Others:	Git, High-performance computing, Cluster computing

References

Niaz Abdolrahim, Ph.D. Associate Professor, Department of Mechanical Engineering, Scientist, Laboratory for Laser Energetics (LLE), 404 Hopeman Engineering Building, University of Rochester, Rochester, NY 14627.
Tel: (585) 276-7817
E-mail: niaz@rochester.edu
Website: Advanced Computational Mechanics and Materials Laboratory

Ashwin Ramasubramaniam, Ph.D.

Professor, Mechanical and Industrial Engineering, Adjunct, Chemical Engineering, Director, Materials Science & Engineering Graduate Program, Engineering Lab (ELab), Room 208C, 160 Governors Drive, University of Massachusetts Amherst, MA 01003, United States. E-mail: ashwin@umass.edu Website: Computational Nanomaterials Laboratory

Dimitrios Maroudas, Ph.D.

Professor and Department Head, Chemical Engineering, Affiliated Faculty, Materials Science & Engineering, Adjunct Professor, Chemistry, Goessmann Laboratory, Room 154A, Chemical Engineering Department, 686 N Pleasant St., Amherst, MA 01003-9303, United States. Tel: (413) 545-3617 E-mail: maroudas@ecs.umass.edu Website: D. Maroudas Laboratory